Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison
نویسندگان
چکیده
منابع مشابه
Multivariate Stochastic Volatility with Bayesian Dynamic Linear Models
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount...
متن کاملBayesian Estimation and Prediction of Stochastic Volatility Models via INLA
In this paper we assess Bayesian estimation and prediction using integrated Laplace approximation (INLA) on a stochastic volatility model. This was performed through a Monte Carlo study with 1000 simulated time series. To evaluate the estimation method, two criteria were considered: the bias and square root of the mean square error (smse). The criteria used for prediction are the one step ahead...
متن کاملEfficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors
An efficient Bayesian estimation using a Markov chain Monte Carlo method is proposed in the case of a multivariate stochastic volatility model as a natural extension of the univariate stochastic volatility model with leverage and heavy-tailed errors. Note that we further incorporate cross-leverage effects among stock returns. Our method is based on a multi-move sampler that samples a block of l...
متن کاملA Multivariate Stochastic Volatility Model
Anastasios Plataniotis and Petros Dellaportas [email protected] [email protected] Department of Statistics, Athens University of Economics and Business, Greece Summary: We introduce a broad class of multivariate stochastic volatility models where transformed eigenvalues and Givens rotation angles are assumed to be AR(1) processes. This decomposition retains the required positive definite structure of...
متن کاملBayesian range-based estimation of stochastic volatility models
Alizadeh, Brandt, and Diebold [2002. Journal of Finance 57, 1047–1091] propose estimating stochastic volatility models by quasi-maximum likelihood using data on the daily range of the log asset price process. We suggest a related Bayesian procedure that delivers exact likelihood based inferences. Our approach also incorporates data on the daily return and accommodates a nonzero drift. We illust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Reviews
سال: 2006
ISSN: 0747-4938,1532-4168
DOI: 10.1080/07474930600713465